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ABSTRACT

Developing methods for rapid, large-scale deployment of carbon capture systems is critical for meeting climate

change goals. Optimization-based decisions can be employed at the design and manufacturing phases to minimize

costs of deployment and operation. Manufacturing standardization results in significant cost savings due to econ-

omies of numbers. Building off previous work, we present a process family design approach to design a set of

carbon capture systems while explicitly including economies of numbers savings within the formulation. Our for-

mulation optimizes both the number and characteristics of the common components in the platform and simulta-

neously designs the resulting set of carbon capture systems. Savings from economies of numbers are explicitly

included in the formulation to determine the number of components in the platform. We show and discuss the

savings we gain from economies of numbers.
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INTRODUCTION

Effectively combatting climate change relies on large-scale
deployment of critical chemical process systems, such as carbon
capture or water desalination. In traditional process system design
approaches, engineers uniquely design each installation focused
on economies of scale. However, this approach is expensive and
coupled with long deployment timelines. Modular design ap-
proaches derive savings from economies of numbers by offering a
catalog of small, stackable designs. However, a pure modular ap-
proach neglects the benefits of economies of scale. In this paper,
we develop a rigorous, optimization-based design method, in-
spired by product family design literature [1], that designs a family
of process variants while simultaneously optimizing a platform of
unit module designs that can be shared across this set of pro-
cesses. This approach seeks to exploit both economies of scale and
economies of numbers to minimize costs while achieving manufac-
turing standardization and reduced deployment timelines.

This work builds on our optimization formulation for process
family design [2] and extends it to explicitly include the benefits
of economies of numbers. Economies of numbers (sometimes

referred to as economies of learning) is a well-documented cost
saving phenomenon [3,4]. It characterizes the manufacturing cost
savings due to standardization; in particular, it is capturing the cor-
relation between cost reduction and the number of times a partic-
ular product has been manufactured. Following an approach like
that in Gazzaneo et al. (2022), we develop a costing expression
that captures total manufacturing costs as a function of the num-
ber of unit modules produced.

If the platform has a small number of unit module designs,
there are fewer options to share across all the process variants.
Therefore, we will be manufacturing more of each of these designs
and gaining increased benefits from economies of numbers. How-
ever, increasing the number of unit module designs in the platform
gives each process variant more options leading to a more “opti-
mized” design (at the cost of reducing savings due to economies of
numbers). With the optimization formulation in Stinchfield et al.
(2023) the number of unit module designs included in the platform
must be pre-specified. In this work, by including the economies of
numbers explicitly, we allow the mathematical programming for-
mulation to determine the optimal number of unit module designs
to include in the platform. We demonstrate this approach on



multiple case studies, including an MEA-based carbon capture sys-
tem and a water desalination process.

LITERATURE REVIEW

Modular and product family design approaches have been
studied in many different industrial applications. Gonzales-Zugasti
(2000) describes how a product family approach can be applied to
NASA’s exploratory space missions beginning with a two-stage op-
timization approach [9]. Simpson et. al. (2004) used a genetic algo-
rithm for product family design optimization for the selection of
parts of aircraft [11]. Pirmoradi et al. 2015 devised a two-phase
platform configuration approach utilizing sensitivity analysis, met-
amodeling, and a black-box optimization strategy to craft a variety
of universal electric motor designs [12]. In general, research fo-
cused on product family design focuses on heuristic and probabil-
istic-based optimization techniques, rather than employing rigor-
ous deterministic mathematical programming algorithms.

Product family design derives significant savings from
standardization of elements within a product. Manufacturing cost
savings associated with standardization are due to economies of
numbers (sometimes referred to as economies of learning). In-
creasing the number of products to be produced results in lower
per unit costs, as documented by Wright et al. (1936). Specifically,
the authors reported how the per unit cost of manufacturing an
airplane decreased with respect to the number of airplanes manu-
factured [13]. This correlation has since been documented across
many industries with different levels of cost reduction.

The effect of economies of numbers can be captured
mathematically as a function of the number of units manufac-
tured, n, and their resulting discount factor, E,. The learning rate
a captures the impact of production levels on cost as shown in (1).

E,=n"¢ (1)

Equation (1) is also referred to as the learning curve and is shown
graphically in Figure 1, with an a = 0.2.
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Figure 1: Example Learning Curvel13!
(¢ =0.2)

Learning curves are product specific. They exhibit the
general behavior shown in Figure 1 but vary significantly depend-
ing on the specific industry and unit manufactured. In practice, a
is selected based on experience or data. Argot and Epple (1990)
explored factors affecting this parameter, including organizational
forgetting, turnover, and transfer of productivity gains, and how it
can potentially reduce costs [14].

Economies of numbers has been mentioned occasion-
ally, but favorably, in literature related to chemical and process
systems engineering. Liebermann (1984) investigated this concept
and used a many-shot approach to try and determine which fac-
tors affected the learning rates in a plant or chemical manufactur-
ing context [3]. Weber et al. (2019) describe how economies of
numbers apply to the chemical process industries [15]. Gazzaneo
et al. (2022) proposed a novel technoeconomic framework for
costing intensified modular systems in the process engineering in-
dustry [4].

This cost benefit from manufacturing standardization applies
only to part of the overall process cost (e.g., labor, but not materi-
als). Therefore, we expect these learning curves to decay towards
an asymptote. Gazzaneo et al. (2022) define a piecewise function
that includes a lower limit on the discount factor, as shown in (2).

E = { n~% ) if n~% = Fbound
e if n~* < Fbound

(2)

Fbound ’

This modified relationship is shown in Figure 2 with « = 0.2 and
Fbound = 07
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Figure 2: Example Learning Curve with Maximum Discount!4!
(a = 0.2 and Fjyyng = 0.70)

In this work, we use a similar economies of numbers correlation
that also includes a maximum discount, Fj,ynq, With @ smooth
transition.

PROBLEM APPROACH

In previous work, we have presented a discretization-based
Mixed Integer Linear Program (MILP) to solve the process family
design problem [2]. In this section, we present modifications to
this formulation that include cost trade-offs associated with econ-
omies of numbers and avoid explicitly specifying the size of the
platform.

Problem Description

Given a process architecture, we wish to specify the designs
for a set of process variants. A process variant v requires customi-
zation of the process architecture to meet a set of specific require-
ments; the specifications are parameterized in the vector r,. For
example, take an industrial refrigeration system that a grocery
store chain wishes to deploy at 10 different stores. While the gen-
eral refrigeration system architecture will be the same at each



location (i.e., the units required to build the system), the design
details for each store (e.g., the size and maximum cooling capacity)
can be different.

The process system architecture refers to the flowsheet of
the process system; this defines all the unit module types neces-
sary to build an instance of the process. In the case of the refriger-
ation system example, unit module types could include the com-
pressor, condenser, valve, and evaporator. We store this set of
unit module types in the set M. Each variant v will have exactly
one of each unit module type m € M. The variable vector d,, ,, is
the unit module type design for each unit module type m and each
variant v.

Our goal is to design and deploy multiple variants v € Vina
cost optimal manner by determining the unit module type designs
d, ., and operating variables 0,,. We wish to save on engineering
and manufacturing costs by optimizing a platform of common unit
module designs to share across the process variants. This means
there are fewer unique units to design and reduced manufacturing
costs for the shared designs due to economies of numbers. We
separate the unit module types M into those that are designed
commonly (stored in the set C, and is included in the platform) and
the remaining that are designed uniquely for each variant (stored
in the set U). The sets C and U are disjoint (C N U = {}) while their
union recovers the set M (C U U = M). The design specifications
for the shared platform unit module types are captured by the cor-
responding variable vectors (iC,,. We index the common designs by
alabel [ € L, to differentiate between options (e.g., different sizes
of a compressor). The collection of common designs (ic_l for all
common unit module types ¢ € C determines the platform P. All
unique unit module types u € U are designed specifically for each
variant; they do not require any standardized elements.

Problem Formulation

To determine an optimal process system design for a single
variant with a set of design requirements, a traditional approach
would start by building the set of equations that defines the sys-
tem (i.e., physics, costing, etc.). An optimization could then be per-
formed, parameterized with the requirements, where the designs
for all unit module types m € M and operational decisions are de-
cision variables. In most applications, this system of equations will
be a nonlinear program (NLP). In our approach, we must design
multiple systems, one for each variant v € V. Additionally, the unit
module designs included in the platform are optimized simultane-
ously. And, for each variant, the common unit module design must
be selected from those in the platform. This introduces discrete
decisions and leads to a Mixed-Integer Nonlinear Program
(MINLP).

Success optimization of MINLPs in process systems engineer-
ing can be a challenge; oftentimes, it is an active area of research.
In the process family design setting, it can quickly become imprac-
tical to directly solve the MINLP with the entire set of design, cost-
ing, and performance equations in the overall formulation. Our ap-
proach to this challenge was to develop a Mixed-Integer Linear
Programming (MILP) formulation that relies on a discretized set of

candidate designs for the common unit module types ¢ € C. For
each possible combination of candidate common unit module de-
signs and each process variant v € V, we optimize the process sys-
tem for the unique unit module designs, operating variables, and
cost. We call this a design alternative for variant v. From here, we
build a set of feasible and infeasible design combinations and their
associated costs. These form the input data for the MILP formula-
tion.

We select a combination of common unit module designs to
assign to a particular variant using the binary decision variable
Xy q- Here, a refers to a particular design alternative and all feasi-
ble alternatives for a variant v are stored in the set A,,. The binary
decision variables y.;,, determines the designs of common unit
module types to include in the platform and how the number that
are manufactured. The parameter M, sets the upper limit on the
number of designs of unit module type c to include in the platform.
Of course, the problem is constrained to ensure we do not select
alternative a for a variant v unless we have also selected the cor-
responding unit module designs in the platform.

As described in the previous section, we aim to capture cost
savings associated with economies of numbers within our formu-
lation. Like Gazzaneo et al. (2022), we use a function that ap-
proaches Fp,,nq @s N = 00, and the smooth formulation is shown
in (3).

Fn = Fbound + (1 - Fbound) X n_ﬁ (3)

This function captures the cost reduction due to economies of
numbers while accounting for fixed costs (e.g., materials) that do
not decrease with increasing n. The parameter 8 also represents a
learning rate. However, since this is only applied to a portion of the
overall manufacturing costs, we use different values from «a to cap-
ture similar behavior to that in Gazzaneo et al. (2022), as shown in
Figure 3.
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Figure 3: Learning Curve with Asymptotic Approach towards Max.
Discount (@ = 0.2, Foyna = 0.70, 8 = 0.8)

We pre-compute each possible discounted unit module cost
based on the number of times the unit module type could be man-
ufactured. The base cost of each unit module type ¢ design [ is
stored in p. ;. We store the discounted costs in p.;", where each
entry represents the cost of unit module type ¢ for common design
1 if is manufactured n times. We introduce the binary variable
Yein € {0,1}" to indicate the number of manufactured units of



unit module type ¢ and common design L.

Formulation (4) describes the MILP we used to design a pro-
cess family from a set of candidate common designs with discounts
from economies of numbers.

min Z w, Z XpaCua — P (4a)
Xy.p

vEV a€A,

st Z Xpa =1 vwev (4b)
a€l,
2(1 —Yer0) SM, VceC (4c)
lE€L,

VceCleLl,(c,)€EQ, (4d)

N
ZYC,l,n_l vceC(C,leL, (4e)
n=0
N VceC,leL, (4f)
Z NXYein = Z Z WyXy g
n=0 VEV a€Ay
al (4g)
p= Z Z Z nXYein X (pc,l - ﬁZI")
c€C lEL,n=0 VeV, a€ A, (4h)
0= ¥a=t (4i)
Yein € {0,1} VvceCIEL,NEN .
i (4)
p ER?

The objective (4a) minimizes the total weighted cost of all variants
including the total savings from economies of numbers, contained
in the variable p. Constraint (4b) ensures only one alternative (i.e.,
combination of common unit module designs) is selected for each
variant. Constraint (4c) sets an upper limit of M. on the number of
common designs selected to be in the platform. Constraint (4d)
ensures an alternative can only be selected if we also choose to
select the required unit module designs for the platform. (4e) and
(4f) constrain the binary indicator y,; , to be 1 if design I for unit
module type c has been selected to be manufactured n-times and
0 otherwise. (4g) calculates the total cost savings attributed to unit
module manufacturing standardization for the given process fam-
ily and stores the entire discount in the variable p. (4h) — (4j) de-
fines the domain for the three optimization variables. Notably, (4g)
defines x,, , to be a continuous variable between the bounds of 0
and 1. For all case studies, x,, ;, converges to binary decision, most
likely but due to similarities in the formulation to the P-Median
optimization problem[16].

CASE STUDY

In this section, we describe the case study used to demon-
strate our optimization approach. We chose a monoethanolamine
solvent based carbon capture system simulated in Aspen Plus® as
a part of the CCSI2 initiative [8]. The CCSI2 initiative focused on
developing computational tools and models for accelerating the

commercialization of carbon capture technologies. The flowsheet
described by Morgan et al. (2022) is shown in Figure 4.

Solvent-based processes, particularly amines, are a mature
class of technology for CO, capture from point sources of power
generation and industrial processes. The solvent-based CO, cap-
ture process is shown schematically in Figure 4.
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Figure 4: MEA Carbon Capture Flowsheet

a
°

Jojeseuabey

18qU0sqy
wnup ysel4

Flue Gas

As shown in Figure 4, the point source flue gas containing
CO, enters the bottom of the absorber and is contacted
countercurrently with solvent flowing down the column. The CO,-
lean solvent stream enters at the top of the column. The transfer
of CO, from the gas to the liquid occurs through reactive
absorption and the mass transfer area is generally provided by
structured packing. Since the reaction of CO, with amine is
exothermic, solvent intercooling is often included in the process
design to expel the heat of absorption associated with the
reaction. At one or more locations in the column, a portion of the
solvent is extracted and cooled by cooling water before being
returned to the column. This generally results in lowering the
temperature profile in the absorber, and thus increasing the
driving force for CO, uptake in the liquid. The flue gas with reduced
CO; content exits the top of the absorber, and the CO,-rich solvent
exits the bottom. The rich solvent is pressurized to avoid flashing
at higher temperatures required for solvent regeneration and is
heated in the lean/rich heat exchanger by the lean solvent exiting
the bottom of the stripper. In the stripper the CO; is separated
from the solvent with the energy requirement for the endothermic
reaction provided by the steam input to the reboiler. The stream
exiting the top of the stripper primarily contains CO, and H,0, the
latter of which is condensed and returned to the stripper as reflux.
This results in a high purity stream of CO, which is compressed and
sent for sequestration or utilization. The lean solvent exits the
bottom of the stripper and is cooled by the rich solvent in the
lean/rich heat exchanger. The trim cooler, which uses cooling
water, provides the residual duty required to cool the solvent prior
to its return to the top of the absorber column.

This model has been adapted in this work for a process
family design problem that accommodates a variety of flue gas
feed conditions including a
concentrations. Representing different industrial flue gas sources.

range of flowrates and CO;

We define the set of variants v € IV to be different combinations
of flue gas flow rates and flue gas CO; concentrations. This was
motivated by the fact that these quantities vary significantly by
carbon capture application and the design decisions depend



heavily on these two quantities and they differ significantly at each
potential carbon capture location, depending on capacities of
plants and the source of CO,. For this case study, we consider 7
flue gas flow rates and 9 CO; concentrations.

The set of unit module types for this system are all of those
defined in the flowsheet, which is to say M =[absorber, pump,
heat exchanger, regenerator, condenser, flash drum, cooler,
mixer]. For the commonly designed absorber and regenerator
(identified by orange graphically in Figure 4), we design for a
specific volume of each column. To run simulations in Aspen Plus®,
absorber and regenerator designs were specified using reported
parameters from NCCC [7] as a baseline. For the absorber, we
tested 6 diameters (0.5m,0.6m,...,1.0m) and 8 regenerator
diameters (0.3m, 0.4m, ..., 1.0m). Furthermore, to optimize the
lean loading we considered 5 different CO, lean loading
concentrations (0.16,0.17,0.18,0.19, 0.20) and selected the best
lean loading for each combination of design for the absorber,
regenerator, and process variant based on lowest total annualized
cost. Given the 63 different process variants we wish to design, 6
absorber designs, 8 regenerator designs, and 5 CO; lean loadings
considered this case study required 15,120 simulations. After
running each simulation the results were used to calculate total
annualized cost for each design alternative.

RESULTS & DISCUSSIONS

In this section, we present the results from the case study
described in the previous section by employing methodology de-
scribed in the Problem Approach section. We discuss key findings
from the results.

We designed the process family using the optimization for-
mulation described in (4). We do not include (4c), instead allowing
the formulation to select however many of the candidate unit
module designs to include in the platform. The optimization re-
sulted in selection of four common designs for the absorber (out
of six possible) and four common designs for the regenerator (out
of eight possible), as shown in Figure 5.
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Figure 5: Carbon Capture Platform, P

The common designs selected for the platform are identified by
the blue shaded boxes. To differentiate between the designs, [ cor-
responds to the diameter (in m.) of the design.

The design of the platform P is determined simultaneously

with the design of the process family F in the optimization formu-
lation. From the process platform constructed and shown in Figure
5, the corresponding optimal design of the process family is shown
in Figure 6.
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Figure 6: Carbon Capture Process Family, F

Figure 6 describes which combination of absorber and regenerator
designs offered in the platform (shown in Figure 5) are assigned to
each variant v € V. The x-axis corresponds to the flue gas flow rate
that descibes a particular variant v; the y-axis corresponds to the
percentage of CO; in the flue gas at variant v.

Using Gurobi®, it took under a second to solve this problem.
The formulation presented in (4) for this case study resulted in
1,376 constraints, 646 continuous variables, and 896 binary
variables. The objective of this optimization resulted in a total
annualized cost, discounted by savings due to economies of
numbers, to be $72.5M. We used a learning rate f = 0.8 and a
maximum discount factor of F,,,,q4 = 0.7. Savings associated with
economies of numbers, captured in the value for the variable p,
came out to be approximately $2.38M annually. The percentage
of savings associated with the overall cost is approximately 3.3%.
If we only consider the capital costs for this system, the percent
savings is 26.8%.

To compare this approach to a more traditional method, we
optimized each carbon capture variant independently. To do this
for the case study presented, we selected the combination of
candidate absorber and regenerator designs that minimized the
cost of the variant, with no discounts due to economies of
numbers or limitations on the number of common designs that
could be used. In this way, we design each variant individually
rather than as a family. The overall objective cost of this individual
optimization came out to $74.86M, which is over $2M more
expensive than taking the process family design approach. This
demonstrates the importance of considering economies of
numbers in the design of chemical process systems due to the
benefits it can provide.



CONCLUSIONS & FUTURE WORK

Process family design lends insight into how standardization
within the process systems engineering manufacturing industry
can potentially save money. In particular, the optimization ap-
proach described in this paper aims to capture and fully exploit
cost savings by quantifying the impact of economies of numbers
on the design of a process family. We demonstrated this approach
on a carbon capture case study, motivated by the need to deploy
these systems rapidly and cost-effectively to combat the effects of
climate change. The results of this case study showed a decrease
in total annualized cost compared to taking the discretized ap-
proach described in Stinchfield et al. (2023) and a traditional engi-
neering approach. The optimization formulation presented in this
work selected the size of the platform, rather than having to pre-
define the size, which further allowed the formulation to deter-
mine the optimal trade-off between standardization and customi-
zation of the system.
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